PEMODELAN SPASIAL TINGKAT PENGANGGURAN TERBUKA DI JAWA TIMUR DENGAN GEOGRAPHICALLY WEIGHTED REGRESSION
نویسندگان
چکیده
Penelitian ini menerapkan metode regresi spasial dengan pembobot letak geografis yang merupakan pengembangan dari linier berganda dan diterapkan dalam mengukur faktor-faktor diduga berpengaruh terhadap tingkat pengangguran terbuka di Jawa Timur. Regresi digunakan untuk memodelkan hubungan antara variabel prediktor respon dimana koefisien parameter dihasilkan bersifat global, artinya bahwa semua objek penelitian akan tergeneralisasi hasil sama. Adanaya kondisi heterogenitas pengamatan diamati mempertimbangkan geografis, maka pendekatan tepat adalah geographically weighted regression. Nilai regression lokal setiap memiliki nilai berbeda-beda. Hasil analisis menunjukkan fungsi kernel paling adaptive bisquare determinasi sebesar 98,3629%. Ukuran kebaikan model lebh baik dibandingkan ukuran yakni 66,5%. juga menggunakan regression, secara signifikan hampir jumlah penduduk miskin (dalam ratus ribu jiwa). Pengelompokkan kabupaten/kota Timur terbentuk 9 cluster bedasarkan predikor guna memberikan gambaran program pemerintah lebih sasaran menekan
منابع مشابه
C.5 Geographically Weighted Regression
Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...
متن کاملA modification to geographically weighted regression
BACKGROUND Geographically weighted regression (GWR) is a modelling technique designed to deal with spatial non-stationarity, e.g., the mean values vary by locations. It has been widely used as a visualization tool to explore the patterns of spatial data. However, the GWR tends to produce unsmooth surfaces when the mean parameters have considerable variations, partly due to that all parameter es...
متن کاملMapping the Results of Geographically Weighted Regression
Geographically weighted regression (GWR) is a local spatial statistical technique for exploring spatial nonstationarity. Previous approaches to mapping the results of GWR have primarily employed an equal step classification and sequential no-hue colour scheme for choropleth mapping of parameter estimates. This cartographic approach may hinder the exploration of spatial nonstationarity by inadeq...
متن کاملA Family of Geographically Weighted Regression Models
A Bayesian treatment of locally linear regression methods introduced in McMillen (1996) and labeled geographically weighted regressions (GWR) in Brunsdon, Fotheringham and Charlton (1996) is set forth in this paper. GWR uses distance-decay-weighted sub-samples of the data to produce locally linear estimates for every point in space. While the use of locally linear regression represents a true c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: STATISTIKA: Journal of Theoretical Statistics and Its Applications
سال: 2022
ISSN: ['2599-2538', '1411-5891']
DOI: https://doi.org/10.29313/statistika.v21i2.295